en:probability

PROBABILITY AND STATISTICS

MANTRAKSHAR HINDI Symbol Name Meaning / definition Example
P(A) प्रायिकता या संभाव्यता फलन probability function probability of event A P(A) = 0.5
P(A ⋂ B) probability of events intersection probability that of events A and B P(A⋂B) = 0.5
P(A ⋃ B) probability of events union probability that of events A or B P(A⋃B) = 0.5
{P(A vert B)} conditional probability function probability of event A given event B occured P(A . B) = 0.3
f (x) probability density function (pdf) P(a ≤ x ≤ b) = ∫ f (x) dx
F(x) cumulative distribution function (cdf) F(x) = P(X≤ x)
μ आबादी माध्य population mean mean of population values μ = 10
E(X) expectation value expected value of random variable X E(X) = 10
E(X|Y) conditional expectation expected value of random variable X given Y E(X |Y=2) = 5
var(X) प्रसरण variance variance of random variable X var(X) = 4
σ2 प्रसरण variance variance of population values σ2 = 4
std(X) मानक विचलन standard deviation standard deviation of random variable X std(X) = 2
σX मानक विचलन standard deviation standard deviation value of random variable X σX  = 2
median middle value of random variable x
cov(X,Y) सहप्रसरण covariance covariance of random variables X and Y cov(X,Y) = 4
corr(X,Y) correlation correlation of random variables X and Y corr(X,Y) = 0.6
ρX,Y correlation correlation of random variables X and Y ρX,Y = 0.6
संकलन summation summation - sum of all values in range of series
∑∑ double summation double summation
Mo बहुलक mode value that occurs most frequently in population
MR mid-range MR = (xmax+xmin)/2
Md sample median half the population is below this value
Q1 lower / first quartile 25% of population are below this value
Q2 median / second quartile 50% of population are below this value = median of samples
Q3 upper / third quartile 75% of population are below this value
x sample mean average / arithmetic mean x = (2+5+9) / 3 = 5.333
s 2 sample variance population samples variance estimator s 2 = 4
s sample standard deviation population samples standard deviation estimator s = 2
zx standard score zx = (x-x) / sx
X ~ distribution of X distribution of random variable X X ~ N(0,3)
N(μ,σ2) प्रसामान्य बंटन normal distribution gaussian distribution X ~ N(0,3)
U(a,b) uniform distribution equal probability in range a,b  X ~ U(0,3)
exp(λ) exponential distribution f (x) = λe-λx , x≥0
gamma(c, λ) gamma distribution f (x) = λ c xc-1e-λx / Γ©, x≥0
χ 2(k) chi-square distribution f (x) = xk/2-1e-x/2 / ( 2k/2 Γ(k/2) )
F (k1, k2) F distribution
Bin(n,p) binomial distribution f (k) = nCk pk(1-p)n-k
Poisson(λ) Poisson distribution f (k) = λke-λ / k!
Geom(p) geometric distribution f (k) =  p(1-p) k
HG(N,K,n) hyper-geometric distribution
Bern(p) Bernoulli distribution
  • en/probability.txt
  • Last modified: 2024/09/07 06:47
  • by 127.0.0.1